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Graphical Approximation to the
Domain of Attraction.

For Second Order Systems

Ryuzo Yokoyama

Edwin Kinnen

University of Rochester

Rochester, New York 14627
Abstract

A method isidescribed for developing an approximate domain
of attraction for a singular point of the ordinary autonomous
second order differential equation X+ fcgi)i } g(x,i) = 0, where
f and g are finite order polynomials in x and i. Reverse solution
trajectories are calculated for domain boundaries from a selec-
tive set of end point conditions known to belong to the domain.
of attraction. The latter is found initially from-an arbitrarily
chosen Liapunov function. The process is arranged for machine
computation and 1s particularly effective for equations with

~

solution trajectories not exhibiting limit cycles.



GRAPHICAL APPROXIMATION TO THE
DOMAIN OF ATTRACTION

FOR SECOND ORDER SYSTEMS

I. INTRODUCTION |

The problem of establishing stability characteristics of
a singular point is fundamental to the analysis of nonlinear
systems. A more difficult problem arises, however, if the domain
of attraction about a singular point found to be asymptotically
stable is to be determined. The significant practical interest in
resolving this latter problem justifies an investigation into the
use of computer assisted solutions. The domain of attraction, or
the region of asymptotic stability, defines those points in state
space around a stable singular point corresponding to initial
conditions of all solution trajectories which approach the singu-
lar point as t becomes increasingly more positive, A computer '
assisted procedure is described for systematically developing an
arbitrary close approximation to the domain of attraction for a
class of second order nonlinear autonomous ordinary differential
equations, based on the concepts of an invarient set and limiting
set from stablllty theory [1].

Methods which have been suggested for estimating the domain
of attraction are directed generally to finding alternate Liapunov
- functions which describe more inclusive portions of the domain
[2,3,4]. This procedure is based instead on the calculation of
selective reverse solution trajectories. It is convenient to use
a Liapunov function for the system in an arbitrarily small region
about the singular point to start the procedure, The results are
independent of the choice of this Liapunov function, however,

While the development has been restricted to one class of
nonlinear second order equations, it appears possible to extend
the ideas to more complex equations,

The problem 1s described in Section II, along with some
characteristics of solution trajectories of the class of non-
linear differential equations. A theorem is stated in Section III
to support the construction procedure. Details of the method and:
some practical considerations are given in Section IV. The next
section describes a machine program for constructing an approxi-
mation to the domain of attraction., Three examples with computer
assisted solutions appear in Section VI,



II. STATEMENT OF THE PROBLEM

Consider a second order system

» .
]

y

e
1

- N(Xay)a , (1)

where N(x,y) is assumed to be a finite order polynomial in x and
y of order n, say '

2
NGx,y) = agg *+ (apox + apyy) + (aygx” + ayxy + agy ) + oo
e n n-1 e n-1 ny
+ (a g x + a X Ty + + 2, n-1%¥Y ta y)
n m . :
= 3% z amixm"iyl. (2)
m=0 1=0
Writing (2) as
N(x,x) = =£(x,x)%x = g(x,x), | (3)
equation (1) 1is equivalently given as
¥+ £(x,x)x + g(x,x) = 0. (4)

As singular points of (1) are defined for i =y =0, all y coordi-
nates are zero and the x coordinates are real roots of the
algebraic equation

N(x,0) = 0



n _ . |
or agg * 210X t vttt oa X = 0. . (5)

Consider k(k < n) distinct real roots of (5) such that the singu-
lar points/of (2) are ‘

(613005 (ag,0)5 ***y (0. (6)

By a parallel shift of the y axis, the position of each point can
be moved to the origin of a new coordinate system, It is conven-
ient to assume, therefore, that an asymptotically stable singular
point is located at the origin and; without loss of generality,.
to.consider the problem of.finding the domain of attraction of
the origin [5]. This assumption requires that the coefficient
a0 in (5) is zero. The origin is also assumed to be an isolated

singular point, i.e., at least one of the other coefficients in
(5) is not zero. - .

Restated, the problem is the following: for a given system

™.
i}

y
N(x,y), . _ (7

S e
i

where (i) N(x,y) is an nth;order polynomial in x and y,

n m-1i_ 1
N(x,y) = & x. "y

a , (n finite) (8)

0 mi

N3

m=1 1

and (ii) at least one ay;, a55, ***, 8,9 18 nonzero; obtain an
approximation to the domain of attraction of the origin, say D,
by another domain entirely within D and arbitrarily close to D.

It is pertinent to recall some characteristics of the
solution to (7). :

Remark 1: The satisfaction of the Lipschitz condition in a domain
R of the state plane for (7) guarantees the existence of a unique



solution for any initial state and the nonintersection of -trajec-
tories except at singular points. Furthermore, all trajectories
are directed to the right in the upper half state plane and to
the left in the lower half state plane. On the x axis, trajec-
tories are directed perpendicularly up if N(x,0) > 0 and down if
N(x,0) < 0, If N(x,0) = 0, the point is a singular point by
definition, ,

The following theorem provides a necessary condition for the
nonlinearity N(x,0) in (7) if the origin is asymptotically stable.

Theorem 1: If the origin of (7) is asymptotically stable, there
exists an € > 0 such that \

x * N(x,0) <0 | : (9)

for all 0 < |x]| 5 e.

Proof: Consider the contrary, that there is a 6, > 0 or a 6§, > O
1 2
such that

N(x,0) > 0 for all 0 < x £ 61 (10)

or g N(x,0) <0 for all-$ 2 x < 0. (101')

2

For (10), choose an initial state

<XO’O)’ . '. (11)

where , 0 < Xy < 61. (12)

The trajectory extends from (11) into the first quadrant perpen-
dicular at the x axis and is then directed to the right becoming
more distant from the origin. For the trajectory to approach to
the origin as t-+«, it must necessarily enter the fourth gquadrant.



| Since, by (10), this cannot occur

through an intersection of the seg-
ment between the origin and (61,0),

the trajectory must become more
distant from the origin than
(61,0), independent of the magni-

tude of xo.' Because of this inde-~ _ -
pendence of Xqs the assumption of A ///fj;/j;;//'
asymptotic stability of the origin 0 Gor :

is contradicted. The proof is
similar if (10') is assumed.

Theorem 2: Let R be a closed,
simply connected, bounded region
in- the state plane of (7). If R
does not include any singular
point, then a trajectory of (7)
starting from a point in R must
reach the boundary of R in finite
time.

Figure 1

Outline of the proof: A trajectory starting from a point in R
can stay in R, for all subsequent time if and conly if:

(i) R is unbounded, or
(ii) the closure of R, i.e., R,includes a singular point, or
(iii) R completely includes a limit cycle.
The possibility of (i) or (ii) is denied by the boundedness and
the closedness of R respectively. The possibility of (iii) is
denied by the simple connectedness._and closedness, that is, if
there exists a limit cycle in R = R, there must exist a singular

point inside the 1limit cycle [6] and in R, Consequently under
the assumptions no trajectory can stay in R for all time.

Identifying function: Consider a set of functions of class Ci
such that

h(x,y) = K, : (13)

where K is a parameter. Equation (13) is a contour field in the



state plane of (7). Noting the value of the time derlvatlve of
(13) under (7) at some point (x Y, ) is

h(x,y) = Gy, + 320,00, an
(x,,y,) '

the following statements are evident.
(1) If the value of (14) is positive, the trajectory at
(xa,y ) is directed so as to climb the contour, toward
increasing values of K of (13).
(11) If the value of (14) is negative, the trajectory at
(x',y ) is directed so as to descend the contour,
toward decreas1ng values of K of (13).

(iii1) If the value of (14) is zero, the trajectory at (Xa’ya)
is tangent to the contour. v

Equatlon (13) is called an identifying function,

Remark 2: Suppose that (XO,yO) is a'reyular point in a domain of

attraction of the origin.  Consider a trajectory T starting from
a point (Xl,yl) such that it reaches (xo,yo) and the time interval

for this transition of the solution is finite., Then any point on
T, including (xl,yl), is a point in the domain of attraction due

to the uniqueness of the solution and the definition of asymptotic
stability. For this purpose, it is necessary and sufficient that
T includes no singular point between (XO,yO) and (xl,yl), and

and that the distance between these two points is finite along T,
III, FUNDAMENTAL THEOREM
Assume that @ is a know subset of D.

Theorem 3: Let (a) L be a line segment in @, (b) P be a tra-
jectory not necessary within Q such that it reaches a point (xo,yo)



on L, and (¢) h(x,y) = k be an identifying function which inter-
sects both L and P at £ and p, as
in figure 2. Assume all distances
between intersecting points along
each of the segments are finite.
Denote the domain surrounded by.
these three segments plus the
boundary as Ds’ a closed domain.

Then (i) if h(x,y) under (7) is
sign definite for all points on
the segment between p and 2 and
including p, and (ii) D, does not

include any singular point, then

DSCD‘ : ' (15)

Proof: By assumption, DS satis-

fies the conditions of Theorem 2.
Hence any trajectory in D must

Figure 2

reach some boundary p01nt of D

in a finite time. But no tva—

Jectory can leave D at a point on P between p and (xo,yo) except

possibly at (xo,yo) Also no trajectory can leave D, at a point

on the identifying function between £ and p due to the sign
definiteness of the derivative of the identifying function., Thus
any trajectory which includes points in D must also include a

point on the segment L between 2 and (xo,yo) As L is included
in D, and from Remark 2, D C D.

Consider a modification of Theorem 3 for a similarly defined
L and h(x,y) =-k. Let D; be defined as a domain surrounded by L
and h(x,y) = k, and two trajectories Pl and P2 starting from dif-
ferent polnts Py and P, ON h(x,y) = k and reaching points 21 and
P, ON L, as shown in figure 3, All distances between inter-
secting points Pis Pos 21 and 22 along each of the segments are
assumed finite,



Lemma: (i) If h(x,y) is sign
definite at all points on
h(x,y) = k between Py and P

including o, and p,, and (ii)
ir D; does not include any
singular point, then

'
DS(: D,

Wx,y) =k

Figure 3

IV, METHOD OF APPROXIMATING THE DOMAIN OF ATTRACTION

_ Theorem 3 and the Lemma can be used routinely to develop D
for a given system (7). The process is described-as finding or
constructing:

1. a line segment L which is a subset of D,
2. a trajectory P (or Pl and P2) to reach a polnt on L,

3. an identifying function h(x,y) = k to construct a domain
D, (or D;); then

4, the condition of Theorem 3 or the Lemma is checked for
]
'DSCD (or DSC D),

and. the process is repeated for a new Ds'

It is necessary for the nonlinearity of (7) to statisfy the con-
dition of Theorem 1; if this fails, the origin cannot be asymp-
totically stable.



Remark 3: To identify a line segment L in D, it is sufficient
to find a Liapunov function V(x,y) to prove the asymptotic
stability of the origin. ' This defines a region

Q; V(x,y) 2 «a (a > 0: const), . (16)

.

where V is negative definite. Define

Ls V(x,y) = «a.

Then | | L. CD (17)

and can be used initially as a segment L. 'Using Lv'for'L also
simplifies later calculations, as all trajectories reach Lv from
the external side-of Q.

To find V(x,y), any of the many suggested construction
methods for an autonomous system can be employed. For machine
- computation, Rodden's method [3], based on a Zubov theorem, may
be used if necessary. BAs Q is only required to initiate the pro-
cedure, the magnitude of @ is of little consequence,

Remark 4: Relative to step 2, finding a trajectory to reach a
point 2 on L, a reverse time trajectory from some point on Ly

is appropriate. The reverse time system of (7) i1s defined by

e
It

—y )
= -N(x,y). V (18)

G e
!

Remark 5: Simple identifying functions are worth considering.
Observe the cases when

hl(x,y),=.x = k, a constant, : (19)



and h2(x,y) =y =0,

From (7) and Remark 1, (19) becomes

o oe
i
B

ho(x,y) =
12 x=k

and - < 0" in the lower half plane.

Alternately (20) is

ﬁz(X,y)l =o = y|y=0 = N(xéO).

which is sign definite on each segment of the x axis between
singular points. If the origin is asymptotically stable,

> 0 in the upper half plane,

(20)

(21)

(217)

- (22)

(22) is

negative on the x.axis between the origin and the nearest singular
point to the right and positive on the x axis between the origin

and the nearest singular point to the left (Theorem 1)
the existence of appropriate iden-

..tifying functions such as (19) or

(20) is sufficient to satisfy part :

of the conditions of Theorem 3 on , by
the domain D < D,

To systematically construct
domains DS using identifying .-

Therefore

shown in flgure i, Define in
this figure

functions (19) and (20), suppose | o

a  and L have been found as </f—\\\\\
do Co
NP

CO: the intersection between
Lv and the x axis in the right

half plane.
dg the intersection between

Lv and the x axis in the left
half plane.

Figure U4
As Q@ is a subset of D, it cannot
include any singular point, except

10



the origin., By Theorem 1,

N(x,0) < O for all x between the origin and CO’ (23)

N(x,0) > O for all x between the origin and dge (231)

(1) Consider a reversed time trajectory Tl from CO. Tl
necessarily becomes more negative than dg in the upper half plane,
by (23) and Remark 1. As shown in
figure 5, define D;,as the . domain
surrounded by Lv’ Tl’ Xx = k < dq s
and the x axis between dp and

(k,0), where k is otherwise an —

arbitrary value, If there

exists no singular point between A

qy and (k,0) on the x axis, then uu///L
0

Theorem 3 insures :
.0 o ®
L N

p! ¢ b.
S

(2) As long as the reverse
time trajectory Tl remains in the
upper half plane, the domain D; ‘ Figure 5

can be extended until a singular
point appears between dp and

(k,0). Assume such a singular point at (al,O), as in figure 6.
.Then the domain surrounded by LV, Tl’ x = oy + eq and the x axis
between aq and (al + el,O) can be identified as Di, where €q is a

small positive value. In the viecinity of the singular point
(a¢,0), there occur two possible initial states of reverse time
trajectories of a new subdomain of D. These are (al + sl,dl)

and (al + el,O), where Gl.is defined in the following.

(3) Consider a second reverse time trajectory T2, starting
from (al + ey,8,), as shown in figure 6. Call the first inter-



-

\ Ta
/ ; o
Te N
/ Ly A (B,-€},0)
e {a; +q, .311\ Co //(01,0) _
{a;,0 y Ts
(a|+¢ o) % /
{a;, 0] / .
' =

\\

Figure 6

section of T2 and the x axis ay (if it exists) and assume the
nearest singular point to the left of q, to be at (ai,O). Ir Tl
remains in the upper half plane above the singular point (ai,O),
consider the domain D2 as that surrounded by Tl, T2, X = oy + €15
the segment of the x axis between a5 and (a + €y ,0) and
X = a; + ey, where €4 is an arbltrary.small p051t1ve value. Since
by assumption there exists no singular voint on the x axis between
.q2 and (ai + ei,O), & = N(x,0) on the x axis between (ai + ei,O)
and a5 is sign definite and the Lemma insures

2

DZC D,

If a very small value is chosen for 815 ©+8.5 6, as in figure 6,

the reverse time trajectory T2 from (a + cl,ﬁs)_may enter the

12



lower half plane without passing over the singular point (al,O).
Then the. construction of a new subdomain of D using Tl will fail
in the upper half plane., Therefore, 61 must be chosen so that
the reverse time trajectory T2 passes over the singular point

and be a lower-bound positive value satisfying this restriction,

If, additionally, Tl intersects the x axis at q3, as in

figure 7, and no singular point exists between ds and q3, Dg is
reduced to the domain surrounded by Ty, T,, x = ay + e, and the

segment of the x axis between a, and q3. If T, stays in the
upper half plane forever, Dg can be identified as an infinite
strip partially surrounded by Tl, T2 and x = aq + €1, @S shown
in figure 8.

(4) For a reverse time trajectory which starts from
(al + e, 0) and is directed to the right in the lower half plane,
as shown in figure 6 as T3, arguments similar to those considered
in (1)~(3) can be applied., Let Dg be .the domain surrounded by
TB’ the segments of the x axis.between (al + el,O) and 4y, and
between C0 and (Bl - e;,Q), LV and x = By - ei. (31,0) is
assumed to be the nearest singular point to the right of the
origin and si is a small arbitrary positive value, Then the
Lemma insures

3
Ds D,

There occur two possible initial states for reverse time
trajectories Tq and T5 in the vicinity of the singular point,
. t ' ' L A
i.e., (By - €, =8,) and (B - €,,0). -8, is a small positive so
that T5 passes below (61,0) for the same reason given for T2 in
item (3).

- (5) 1Ir Tl in figure 5 enters the third quadrant at point
(ql,O), as shown in figure 9, with no singular point between
(ql,O) and the origin, then D; is the domain surrounded by L,

Tl and the segment of the x axis between qq and 4y, and D% < D,

13
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Continuing these steps (1)-
(5), based on any known subdomain
of D, new subdomains of D can be
sequentially developed, Note
that constructed subdomains
using reverse time trajectories

can include no singular points.. B |

It is this characteristic com- : S

bined with the identifying , 7///0
functions (19) and (20) that Aé? L
essentially simplify the fore-~ 9 g0 Co

computation described in the

going procedure for the machine ; \\_jrﬁ/) %
next section,

Figure 9

V,* MACHINE COMPUTATION

The steps given in the last section can be programmed for
machine computation and the direct plotting of an approximation
to the domain of attraction. Initially it is necessary to check
the condition of Theorem 1 and determine a known segment in D,
e.g., a Liapunov function as stated. For a machine program it is
sufficlent to calculate and plot reverse time trajectories to
approximate D from selected initial states. The approximated
domain is then identified visually, referring to the considera-
tions of the previous section, A program has been assembled to
sequentially: (Cl) calculate reverse ftime trajectories from

selected initiél states, (Cz) develop initial conditions for
additional trajectories and (C3) end when all relevant trajec-

tories are calculated. It is necessary to locate singular points
of system (7). These exist on the x axis with x coordinates
which are the real roots of

" N(x,0) = 0. ‘ : (24)

Any standard method can be applied to solve this equation., 1In

15



the program which follows, all singular poinﬁs are assumed to be
identified for the computation and inserted as data input. The
. flow chart of the program appears in figure 10.

For (Cl), the Runge~Kutta method was used to solve the time

reversed trajectories approximated by connecting segments of
infinitesimal time intervals, End points of a segment, say
(xn,yn) for t = t_ and (Xn+1’yn+1) for t = t + At, are related

n
[7] as

_ 1o
X, + & (KO + 2K, + 2K, + K3) (25)

kel
1

n+1

1
vy, t % (Lo + 2L, + 2L, + L3),

yn+l 1

where

L = -t . N(xn,yn)

O

L

Ky = =8t « (y, + =)
K L -

Ly = =8t ¢ N(x, " =, y, + =) (26)

4 Ly

K2 = ~At ¢ (yn + 7;)

! o

L2 = AL N(Xn"'-?-, yn+-—2—-)

=
i

3 = =bt - N(xn + X5, Y * Ly).

Each point (xn,yn) along the trajectories are punched out for
subsequent machine plotting.

']-6_¢ .
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For‘(CZ), the initial state for the first reverse time tra-
Jectory is predetermined as a point on LV. Initial states for

other trajectories depend upon subsequent results but exist only
~in the viecinity of singular points., Generally, for a singular
point to the immediate left of a subdomain boundary in the upper
half plane, as (a,0) in figure 6, two possible initial states

exist, (o + €,0) and (o + ¢,8). € is an arbitrary small positive
number and § is the lower-bound positive value so that the re-
verse time trajectory from (a + €,8) passes above (a,0). Alter-
nately, about a singular point (a,0) to the right of a subdomain
boundary in the lower half plane, as (a,0) in figure 6, (o ~ €,0)
and (o - €,-8) are possible initial states of reverse time tra-
Jectories which pass below (a,0). If a new possible initial
state 1s found during the calculation from a trajectory passing
over or under a singular point, this initial state is stored for
the later calculations. For convenience, at the beginning of a
reverse time trajectory calculation, an identifying trajectory
number and the corresponding initial state are printed out.

The calculation of each trajectory is stopped when

(1) it is extended so as to establish a subdomain of D,

(ii) it is extended to a pfeselected limit value of the
coordinates,

(1ii) it rotates many times about a singular point indicating
an approach to a 1limit cycle, or

(1v) its extension becomes infinitesimal as it approaches a
singular point.

For (ii), the calculation is stopped when the trajectory reaches
the limits of the region :

|x] < P, | (27

where P is chosen arbitrarily but so that x = P are not - singular
points., When the computation of a trajectory is stopped for ex-
ceeding this 1limit, the statement "CHANGE OF TRAJECTORY DUE TO
EXCESS VALUE OF X" is printed out, For (iiil), the number of
changes of sign for y is counted along each reverse time trajec-

tory and is printed out as "NO., OF ROTATIONS *¥ %”. When this

17a>



number exceeds a preset value, the calculation is stopped and the
statement "CHANGE OF TRAJECTORY DUE TO EXCESS ROTATION" is printed
out. For (iv), the amount

1i+100

i max {]xi - Xi—ll’_ lyi - yi_ll}

is accumulated along the trajectory and if the average value of
the maximum changes becomes

i+100

§ .max {‘.Xi - Xi_]_l: Iyi - yi'-l’} )
100 ‘ = 5K, (28)

where SK is a predetermined value, the calculation is stopped
and the statement "CHANGE OF TRAJECTORY DUE TO STEADY STATE" is
printed out. :

When the possible initial states for reverse time trajectories
are exhausted in the region indicated by (27) and the last tra-
Jectory is terminated, .the entire computation is complete,

The Fortran program assembled for this computation and used
for the examples of the next section is listed in the Appendix,
The output of the calculation is both printed and punched out,
the latter then used for a standard plotting routine for a
graphical result,

VI. EXAMPLES

~

Three examples demonstrate the method and illustrate numer-
ically calculated domains of attraction. The identifying func-
" tions used were

>
]

K ' o (19)
and : y=0. ' (20)

The region for the search was arbitrarily restricted to the
X coordinate, If a reverse time trajectory rotated more than four

18



times around the origin, the calculation was arranged to end,
anticipating a limit cycle. At was assumed to be 0,01,

Example 1: The system is given as-

- /
/

e
i

y

- X - by + 2y3. , (29)

L
"

(1) As
X . N(x,b) = -x°
the condition of Theorem 1 is satisfied. .
(ii) A singular point exists at the oriéin.
(iii) Assume |
| V(x,y) =_x2 + y2

and the time derivative under (29) is

V(x,y) = 2xx + 2yy = ~4y2(3 - yg).
Therefore
V(x,y) <0 . if y® <3  and vy ¥ 0,
=0 if y = 0. (30)

On the x axis,

X

0

y = =X

and any trajectory terminates at the origin. From (30),
it 1s possible to choose LV as

x° + y° = (1.5)°

which is completely included in D.

The computed result is shown in figure 11. Starting from
(L.5,0) the calculation stopped after the reverse time trajectory

19



TIT 8and14g

=

chz+Ag-X

_=f
A =X

20



rotated four times around the origin. Thus there exists a limit
cycle around the origin and the domain inside the limit cycle is

~ recognized as the domain of attraction. For this example,

the

procedure does no more, in effect, than determine the domain of

attraction by plotting a reverse trajectory.
Example 2: The system is given as

%=y

Y= - X =y - %xz.
(1) As
X ¢ N(x,0) = ~x2(1 + %X)’

the condition of Theorem 1 is satisfied, for example,
|x] < 0.125.

(ii) A singular point exists at the origin and x = =4,

(iii) Assume

3
V(x,y) = x2 + y2 + %T’

where the last term is included to

insure V negative definite. A
rough sketch of contours of (32)

is shown in figure 12, For V < %g <§::::::::::::

they become concentric closed

curves around the origin, The
time derivative under (31) is {-4,0, //“\

(31)

in

(32)

Poon

T(x,y) = =29° < 0 if y 4 0. ‘ &//JJ |
)

From (31), no solution terminates
on the x axis except at the singu-
lar points. Thus (32) is a
Liapunov functilon proving asymp-
totical stability of the origin
[1]. Choose L, somewhat arbi-

Figure 12
trarily as : ~

21



4 3 .
x° + y° + X = (0.3)°2,

which is completely included in D.

The result of a machine computation is shown in figure 13.
The first reverse time trajectory, Tl, is started from (-0.3,0).

After this trajectory passes over the singular point at (~4,0),
the second trajectory, T,, is started from (-lU+e,0). When T,

attains the preset maximum value of x,.the third trajectory, T3,
is started from (~4+e,8). A magnification of T2 and ‘I‘3 in the
vicinity of (-4,0) is shown in figure 14. Finally the region
surrounded by T,, T3, X = =l+e and x = -10.0 is recognized to be

a subset of D.
For comparison, figure 15 shows a set of trajectories of (31)

calculated from the time reversed system with arbitrary selected
initial states of

(0.011,0), i = 5,4,3,2,1,-1,-2,-3,=4,-5.

As an approximation to the domain of attraction evidently cannot
. be found by straight-forward calculations of reverse time tra-
Jectories in this example, the efficiency of this procedure is
noticeable, Figure 16 is the union of figures 13 and 15,

Example 3: Given

e
i
<3

(33)

i
!
I
>
]
noj
g
+
=
>

(i)k As

the condition of Theorem 1 'is satisfied, e.g., if |x| < 1.

22
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Figure 15 §
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(ii) Singular pointsbare at x = 4,0,-4.

(1ii) Assume

T
_ .2,y 1.4
/ V(x,y) = x + T " X .

A rough. sketch of contours of (34) is shown in figure 17. For.
The derivative

V < 6, these are closed curves around the origin.
under (33) is ~

2xx + %y - %x3

ﬁ(x,y)‘

2
=-.3fl.r<0,if'y+0.' (35)

(34)

4,0)

From (33), no solution trajectory
terminates on the x axis except at
the singular points. Therefore
(34) is a Liapunov function prov-
ing asymptotic stability of the
origin [1]. Choose L, for con-

venience as

2 4 _ 31

which is completely included in D.

The result of the computation is shown in figure 18,
first reverse time trajectory, Tl,is started on LV at (-1.0,0).

After Tl passes under the singular point at (4,0), the second
trajectory, T,, 1s computed from (4-e,0). Subsequently, T,

passes over the singular point at (-4,0). When T,

preset maximum, the third trajectory, T,, is started at(-l+e,0)

The fourth and
fifth trajectories are started at (-4+e,8) and (4-¢,-§) respec-
tively. Finally, the domain surrounded by T2 - TS’ X = lUeg,

and likewise terminates at a maximum value of x.

x = =lb+e and x = +8 is seen to be a subset of D.

e / \
\

2
y N - .
XT S o- g5k 35 _ Figure 17

attains a
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Figure 18




VII., CONCLUSION

A procedure for determining an approximation to.the domain
of attraction of a general class of nonlinear differential equa-
tions (7) has been shown to be effective. and efficient, and
adaptable to machine assisted computation. This is illustrated
by examples representing three types of domains of attraction.

The closeness of the approximation to the domain of attrac-
tion can be improved by choosing initial values for reverse time
trajectories nearer to the singular points. This should be done
with discretion, however, as the approximating domain can exceed
the domain of attractlon from accumulated errors in the trajectory
computation, for a specific choice of At.

While the differential equations considered represent a
limited class of second order equations, i.e., with the nonlin-
earity given as a finite order polynomial, it is expected that
the procedure can be generalized somewhat. For other nonlinear-
ities, the search for domains would have to be restricted to the
regions where the unigueness of the solution is guaranteed with
the origin as an isolated singular point. The more general .
second order system

N N *
o

Nl(X’Y)

& e
i

Ny (x,y)

could similarly be considered; however, the computation would
become more complicated for singular point identification as the
locations of singular points are no longer guaranteed on the x
axis, Extensions to higher order nonlinear equations are limited
in part by problems of representation.

.29
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APPENDIX

An IBM 360/50 was used for the computation described for the

examples. The program, constructed according to the flow chart
in figure 11, is listed starting on page 33.

The data statement requireé

a small positive number for the trial value of § in the
vieinity of a singular point., - As stated in item (3) of
Section IV, the reverse time trajectory from (a-e 38)

[or (a+e,—6)] must pass over (or below) the SLngular point
(0,0). To find the value of § for each trajectory, a trial
computation of a reverse time trajectory is made from
(a=e,D) [or (oe+e,~D)] for 200 At segments., If the require-
ment for the trajectory cannot be satisfied, another trial
computation is started from (a-e¢,2D) [or (ate,-2D)]}, The
trial trajectory computations are continued sequentially
from (a-e,kD) [or (a+e,-kD)] for 200 At segments until the
requlrements 1s satlsfled where k is a positive integer.
Then &8 is ildentified as the]ower—bound k to satisfy the
requirement. The number of 200 At segments for the trial
trajectory is arbitrarily assumed.

a small positive number for e.
a small positive number for At in equation (26),

a positive number to restrict the region of the state plane,

~as in (27).

SK:

NUP:

a small positive number for equation (28).

a positive integer for rotation of trajectories for stopping
the trajectory calculation if a limit cycle is found,.

the number of singular points, excluding the origin, in
the left half plane of the search region.

the number of singular points, excluding the orlgln in
the search region plus 2.

the x coordinate of the Ith singular point in the search
region., I, beginning from 2, is numbered for each singu~
lar point except the origin from left to right sequen-
tially. Thus SP(2) is the x coordinate of the left most
singular point, SP(3) is that of the next to the right,
etc., For purposes of the program, SP(1) = ~P and
SP(NTS) = P, although these are not singular points.



X0

YO

(1)
(11)

(ii1)

32

the x coordinate of the initial state of the first reverse

time trajectory.

the'y coordinate of the initial state of the first reverse

time trajectory.

The‘compiling time of the program is about 4,50
Executing times of Examples 1-3 were as

Example 1: 20.5 seconds with At
Example 2: 26.8 seconds with At

Example 3: 25.3 seconds with At

follows:

4

0,01 and P
0.01 and P

0.01 and P

seconds,

10.0.

[}

10.0.

8.0,
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